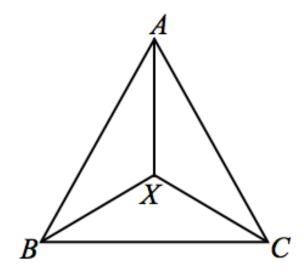

☐ DO NOW – Geometry Regents Lomac 2014-2015	5 Date	<u></u>	due Congruence 4.2
(DN) Draw isosceles triangle ABC with AB = BC and ison triangle BCD with BD = CD but neither BD nor CD is to AB. (Remember that each letter should only be un once in a diagram.)	s equal	me LO:	Per I can use SAS \cong to prove properties of isosceles triangles including the isosceles triangle theorem.
Congruence: Proving properties – base and triansparen cies, dry erase markers, eraser, compass, straightedg e	e base angles		_
I know that	because		

] (1) nt.	Congruence: Provi	ing properties – Bas le is isosceles then th	•	•	/	
	What does	s isosceles mean?	What are base a	ngles?		
①_				because it is give	en.	
(Labe	el the triangle with lett	ers and mark congrue	ent parts based on de	finitions.)		
	\					
2	Side≅	because △	is		:	
(Wha	t congruent parts did	you mark?)				
	(Where is the vert	ects the vertex angle ex angle? What does	bisect mean? The se	egment needs a lette	er where it intersects	
	(Where is the vert the triangle.)	ex angle? What does ≅ ∠ becongruent angles from	bisect mean? The se	egment needs a lette	er where it intersects	the base c
	(Where is the vert the triangle.)	ex angle? What does	cause segment because the	is the y? Do you have to note the segment is	of of ame as itself (reflexive	the base o
	(Where is the vert the triangle.)	ex angle? What does	cause segment because the degree of both triangles?	is the y? Do you have to re segment is the sa	of of ame as itself (reflexive	the base o
	(Where is the vert the triangle.)	ex angle? What does \(\times \angle \) congruent angles from e diagram.) \(\times \) \(\times \) (What segment is a si	cause segment because the de of both triangles?	is the y? Do you have to resegment is the sa	of of ame as itself (reflexive diagram.)	the base of
	(Where is the vert the triangle.)	ex angle? What does	cause segment because the de of both triangles?	is the y? Do you have to resegment is the sa	of of ame as itself (reflexive diagram.)	the base o
Check	(Where is the vert the triangle.)	ex angle? What does	cause segment to step 3? Where? Where is step 3? Where? Where is step 3? Where? Where is step 3? Where is step 3? Where? Where is step 3? Where is step 3.	is the y? Do you have to resegment is the same segment is the same same this fact in the congruence.	of of of ame as itself (reflexive diagram.)	e property)
Check	(Where is the vert the triangle.)	ex angle? What does \(\equiv \sum_{\text{be}} \) \(\text{be} \) \(\text{cause of } \) \(\text{cause of } \) \(\text{cause of } \)	cause segment because the de of both triangles? triangle conough to prove the triangles are congruent,	is the y? Do you have to resegment is the same segment is the same same congruence. angles are congruence all corresponding are	of of of ame them with 3 letter diagram.) ont? See lesson 5.1) ongle pairs and side pairs	e property)

 \square (2) Congruence: Proving properties – Perpendicular

 \square Given: $\overline{JK}\cong\overline{JL}$, \overline{JR} bisects \angle KJL

Prove: $\overline{JR} \perp \overline{KL}$

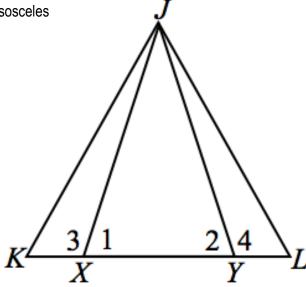


\square Given: $\overline{JK} \cong \mathbb{R}$	\bigwedge
_	AND
ark congruent parts in t	the diagram.)
	
② ∠≅	\angle because bisects K R
(What was bisected?	What does bisect mean?What congruent parts did you mark?)
3	≅ because the segment is the same as itself (reflexive property)
(What seg	gment is a side of both small triangles? Mark this fact in the diagram.)
<u> </u>	
≅	because of triangle congruence.
eck your facts from step	os 1,2, and 3. Is that enough to prove the triangles are congruent? See lesson 5.1)
~	hecause when triangles are congruent, all corresponding angle pairs and
	because when triangles are congruent, all corresponding angle pairs and
sponding side pairs are	·
sponding side pairs are	
sponding side pairs are	·
ponding side pairs are	ye? What angles will help us do that?)
ponding side pairs are	© + = 180° because they are a linear pair.
ponding side pairs are were we trying to prov	© + = 180° because they are a linear pair. (How can 180° help us get to 90°?)
ponding side pairs are were we trying to prov	© + = 180° because they are a linear pair. (How can 180° help us get to 90°?) = 180° by substitution
ponding side pairs are were we trying to prov	© + = 180° because they are a linear pair. (How can 180° help us get to 90°?)
ponding side pairs are were we trying to prov	© + = 180° because they are a linear pair. (How can 180° help us get to 90°?) = 180° by substitution
eponding side pairs are were we trying to prove	© + = 180° because they are a linear pair. (How can 180° help us get to 90°?) = 180° by substitution
© +	© = 180° because they are a linear pair. (How can 180° help us get to 90°?) = 180° by substitution formation from steps 5 and 6 together?)
© +	© = 180° because they are a linear pair. (How can 180° help us get to 90°?) = 180° by substitution formation from steps 5 and 6 together?) by combining like terms
© + How can we put the information	Series What angles will help us do that?) (a) + = 180° because they are a linear pair. (How can 180° help us get to 90°?) = 180° by substitution formation from steps 5 and 6 together?) (b) combining like terms In from step 7 to help us get what we want for step 9?)
© + How can we put the information =° k	© + = 180° because they are a linear pair. (How can 180° help us get to 90°?) = 180° by substitution formation from steps 5 and 6 together?) 2 by combining like terms In from step 7 to help us get what we want for step 9?)
© + How can we put the information =° k	Series What angles will help us do that?) (a) + = 180° because they are a linear pair. (How can 180° help us get to 90°?) = 180° by substitution formation from steps 5 and 6 together?) (b) combining like terms In from step 7 to help us get what we want for step 9?)

(3) Congruence: Proving properties – angle bisector

 \square Given: $\overline{AB} \cong \overline{AC}$, $\overline{XB} \cong \overline{XC}$

Prove: \overline{AX} bisects $\angle BAC$

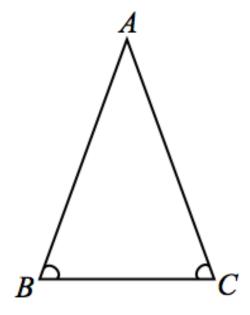


(3) t	Congruence: Proving properties – angle bisector take 2 Given: $\overline{AB} \cong \overline{AC}$, $\overline{XB} \cong \overline{XC}$ Prove: \overline{AX} bisects $\angle BAC$
	TIOVO. AN DISCOS ZENTO
	AND because it is given.
ark co	ngruent parts.)
2 ∠	$ABC \cong \angle$ and $\angle XBC \cong \angle$ because base angles of
Refer	to notes from lesson 4.5.)
	③ ∠ABX = ∠ABC - ∠ and ∠ACX = ∠ ∠
	because
	(What equations can we write with the angles we know?)
•	VARO (
4) Z	∠ABC - ∠ = ∠ ∠ because
There	fore ∠ABX = ∠ACX
111616	because
(What	t equations can we write with the angles we know?)
Δ	≅ △ because
ich ai	ngles must be congruent to prove that?)
\rightarrow	
)	\cong \angle because when triangles are congruent, all corresponding angle pairs and
respo	nding side pairs are
hat we	ere we trying to prove? What angles will help us do that?)
	↓
\overline{AX} h	bisects ∠ because when 2 adjacent angles are congruent, the larger angle formed by the two
	ust have been cut in half (bisected).
	es bisect mean? What evidence will show us that an angle is bisected?)
	ŭ ,

(4) Congruence: Proving properties – isosceles

 \square Given: $\overline{JX} \cong \overline{JY}$, $\overline{KX} \cong \overline{LY}$

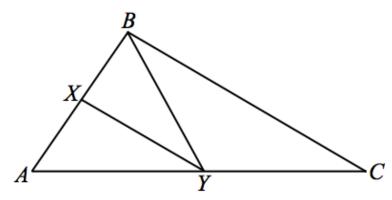
Prove: △JKL is isosceles



(4) Congruence: Proving properties – isosceles take 2	Ň
D I am given AND lark congruent parts.)	$K \frac{\sqrt{3/1}}{X} \frac{2\sqrt{4}}{Y}$
② ∠ ≅ ∠ because base angles of an	
because	
because when triangles are congruent, all corresponding side pairs are hat were we trying to prove? What segments will help us do that?)	ponding angle pairs and
•	
△JKL is isosceles because it has congruent sides, side and s nat does isosceles mean? What evidence will show us that a triangle is isoscel	

(5) Congruence: Proving properties – equal sides

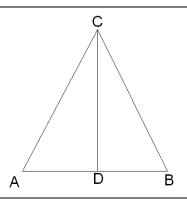
 \square Given: \triangle ABC with \angle CBA \cong \angle BCA


Prove: $\overline{BA} \cong \overline{CA}$

(5) Congruence: Proving properties – equal side	<u> </u>
☐ Given: △ABC with ∠CBA ≅ ∠BCA	Prove: $\overline{BA} \cong \overline{CA}$
	\neg $\overline{\Lambda}$
① I am given	_ / \
Mark congruent parts.)	_ / \
—	/ \
② Construct the perpendicular bisector of \overline{BC} and	/ \
bel the point of intersection D.	/
low, ∠=° and	/
≅ because	/
	R^{Δ}
Refer to unit 2. What do we know when we have a	Б
erpendicular bisector? Mark this in your diagram)	
③ When reflected across the perpendicular bis	sector, ray BA and ray coincide because points B and
coincide and ∠B and ∠C are	Point A must be on the perpendicular
	which means must coincide with itself when the rays
	A is on the
(Does A have to be on the perpendicular bisector	
↓	
④ ≅ because the	segment is the same as itself (reflexive property)
(What segment is a side of both triangles? M	ark this fact in the diagram.)
+ +	
⑤ △ ≅ △ because	
(Which pair of triangles should we prove congruent to g	et the congruent segments we want?)
<u> </u>	
⑥ ≅ because when triangles	are congruent, all corresponding angle pairs and
corresponding side pairs are	
(What were we trying to prove? Could we prove it if we l	had congruent triangles?)

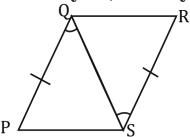
(6) Congruence: Proving properties – Base angles of an isosceles triangle take 2

Prove: $\overline{YB} \cong \overline{YC}$

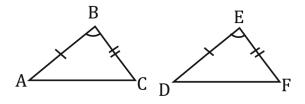

ont Gi	ruence: Proving properties – Base angles of an isosceles triangle take 2 ven: \triangle ABC, \overline{XY} bisects \angle BYA and $\overline{BC} \parallel \overline{XY}$,
Pr	Fove: $\overline{YB} \cong \overline{YC}$
① I am given	
	② ∠ ≅ ∠ because
	(What does bisect mean? Mark the diagram.)
	_ ≅ ∠ because
	t out of parallel lines? Refer to notes from lesson 4.5.
ark the diagrai	
	≅because rent angles will help us prove that the segments are congruent?) ↓
	≅because re that segments are congruent? Can we show that base angles of a triangle are congruent so we can t sides?)

(7) Exit Ticket

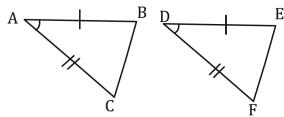
 \square Given: \overline{CD} bisects \angle BCA


 $\overline{CA}\cong \overline{CB}$

Prove: $\overline{AD} \cong \overline{BD}$

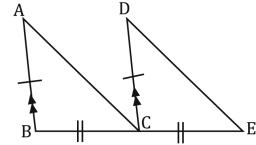

(8) Homework

(1) Given: $\overline{PQ} \cong \overline{RS}$, and $\angle PQS \cong \angle RSQ$

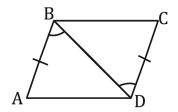

Prove: △ABC≅△DBC

(2) Given: $\overline{AB} \cong \overline{DE}$, $\overline{BC} \cong \overline{EF}$, and $\angle B \cong \angle E$

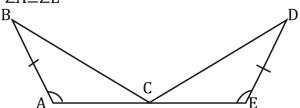
Prove: △ABC≅△DEF


(3) Given: $\overline{AB} \cong \overline{DE}$, $\overline{AC} \cong \overline{DF}$, and $\angle A \cong \angle D$

Prove: △ABC≅△DEF


(8) Homework

(4) Given: $\overline{AB} \cong \overline{DC}$, $\overline{AB} || \overline{DC}$, and $\overline{BC} \cong \overline{CE}$


Prove: △ABC≅△DCE

(5) Given: $\overline{AB} \cong \overline{CD}$, $\angle ABD \cong \angle CDB$

Prove: △ABD≅△CDB

(6) Given: C is the midpoint of \overline{AE} , $\overline{BA}{\cong}\overline{DE}$, and ${\angle}A{\cong}{\angle}E$

Prove: △ABC≅△EDC